Jump to content
Quora StumbleUpon Banana Lime Leaf vKontakte Sky Blueberry Slack Watermelon Chocolate Steam Black Facebook Tumblr
Quora StumbleUpon Banana Lime Leaf vKontakte Sky Blueberry Slack Watermelon Chocolate Steam Black Facebook Tumblr

Придружите се нашој ВИБЕР ГРУПИ на ЛИНКУ

Човек Жоја

Ajnštajn za početnike i čudesni svet kvanta

Recommended Posts

Albert_Einstein_Head.jpg

 

 

Merenje brzine svetlosti

 

Merenje brzine zvuka

 

Osnova teorije relativnosti zasniva se na karakterističnom ponašanju svetlosnih talasa. Za teoriju relativnosti jedna od najvažnijih osobina svetlosti je njena brzina. Kako je po svojoj prirodi svetlost elektromagnetni talas, onda je, ustvari, brzina svih elektromagnetnih talasa jednaka brzini svetlosti. Ali pre nego što su uspeli da izmere brzinu svetlosti, ljudi su prvo izmerili brzinu jedne vrste malo jednostavnijih, tj. mehaničkih talasa, odnosno prvo je izmerena brzina zvuka.

 

Očigledno je da su naši pretci bili svesni činjenice da kad nešto proizvede buku zvuk se prenosi od mesta nastanka zvuka do uha slušaoca. Ovaj zaključak je donet na osnovu zapažanja da što je neko bio dalje od munje bilo je potrebno više vremena da čuje udar groma. Bez obzira što je ova pojava bila dobro poznata niko nije uspeo da izmeri brzinu zvuka do Srednjeg veka.

 

Jedno od prvih merenja brzine zvuka izveo je Francuz Mersen (1588 – 1648). Mersen je brzinu zvuka odredio na jedan vrlo jednostavan način. Na rastojanju od nekoliko kilometara postavio je top iz kojeg je njegov pomoćnik opalio. Mersen se za to vreme nalazio na svom osmatračkom položaju odakle je jasno mogao da vidi blesak topa u trenutku opaljivanja. Sve što je trebalo da uradi je da izmeri vremenski interval koji protekne između bleska i trenutka kad čuje zvuk eksplozije. Ovaj interval je odredio brojanjem punih oscilacija klatna, pošto je u to doba klatno bila jedina poznata "štoperica". Znajući vreme potrebno klatnu za jedan zamah izračunao je ukupno vreme potrebno zvuku eksplozije da stigne do njega, a zatim tim vremenom podelio rastojanje, na taj način dobio je brzinu zvuka. Njegov rezultat je bio vrlo precizan, iznosio je 1130 kilometara na čas. Danas mnogo tačnije metode daju vrednost od 1210 km/h. U Mersenovo vreme ovo se smatralo vrlo velikom brzinom pošto je tada jedna od najvećih poznatih brzina bila brzina trkačkog konja koja je iznosila oko 64 km/h.

 

Galilejevi pokušaji merenja brzine svetlosti

 

Svima je vrlo dobro poznato šta se dešava kad čovek uđe u mračnu sobu i upali pritisne prekidač da upali sijalicu – u istom trenutku paljenja prekidača sijalica počinje da svetli a svetlost sa nje trenutno stiže do naših očiju. Takođe je dobro poznato šta je sijalica izvor svetlosti i da sva svetlost koja obasjava sobu potiče od sijalice. Lako se dolazi do zaključka da bi čovek video svetlost ona mora da pređe put od sijalice do njegovih očiju. Čovekova čula kazuju mu da vidi svetlost u istom trenutku paljenja prekidača, ali da li se svetlost stvarno prenosi beskonačnom brzinom, ili je ta njena brzina samo toliko velika da našim čulima samo deluje da se sve dešava trenutno?

 

U Srednjem veku bilo je dosta rasprava o tome da li je brzina svetlosti konačna ili je beskonačna, pri čemu je i tako istaknut naučnik kao Dekart (1596 – 1650) tvrdio da je ona beskonačna, dok je Galilej (1564 – 1632) tvrdio da je ona konačna.

 

Da bi potvrdio da je on u pravu Galilej je probao da eksperimentom odredi brzinu svetlosti. Ovaj eksperiment probao je da izvede na sličan način kao što je Mersen odredio brzinu zvuka. Jedne tamne noći poslao je svog pomoćnika sa upaljenim fenjerom prekrivenim kofom na jedan udaljeni brežuljak. Galilej je takođe imao fenjer pokriven kofom. Kada su obojica bili na svojim mestima, Galilej je podigao kofu sa svog fenjera i pustio svetlost da putuje ka pomoćniku, zadatak pomoćnika bio je da u trenutku kad ugleda svetlo sa Galilejevog fenjera odmah otkrije svoj fenjer. Svetlosni zraci iz pomoćnikovog fenjera stigli bi do Galileja koji je merio ukupno vreme od kad je podigao kofu do prijema svetlosnih zraka iz drugog fenjera. Mislio je da može na osnovu rastojanja između sebe i pomoćnika i izmerenog vremena da odredi brzinu svetlosti. ali tu je nastupio veliki problem. Svaki put kad bi ponovio eksperiment Galilej je dobijao različite rezultate, pa iz tih rezultata nije mogao da izvede nikakav zaključak.

 

Tek mnogo godina posle Galileja bilo je jasno zašto Galilejev pokušaj nije uspeo: vreme koje je bilo potrebo Galileju i njegovom pomoćniku da reaguju na uočenu svetlost fenjera bilo je mnogo veće u odnosu na vreme potrebno svetlosti da prevali put između njih dvojice, odnosno ako pretpostavimo da je za njihovu reakciju bila potrebna jedna sekunda za to vreme svetlost bi 14 puta obišla Zemlju.

 

Iako je ova metoda izgledala ispravna, bila je tako uzaludna kao kad bi puž pokušavao da uhvati muvu.

 

Remerova astronomska metoda

 

Posle Galilejevog neuspeha bilo je jasno da je za određivanje brzine svetlosti neophodno merenje vremena prolaska svetlosnog zraka preko velikog rastojanja, većeg od obima Zemlje, ili da se koristi kraće rastojanje ali pod uslovom da se raspolaže preciznim časovnikom. Ubrzo posle neuspeha Galileja javila se ideja o jednoj astronomskoj metodi, i kao ironija, jedno od Galilejevih ranih otkrića u astronomiji omogućilo je uspeh te metode.

 

Kao što je poznato Galilej je 1610. god. prvi put upotrebio teleskop u astronomiji i pomoću njega otkrio četiri najveća Jupiterova satelita (kasnije nazvana Galilejevi sateliti). Kao i Mesec oko Zemlje, svaki od njih putuje svojom orbitom oko planete, svaki u svom konstantnom vremenskom intervalu, nazvanom period.

 

Danski astronom Olaf Remer je 1675. godine izmerio periode ova četiri satelita, ali je dobio drugačije rezultate kada ih je opet izmerio nakon šest meseci! Remer je izmerio vremenski interval potreban jednom od Jupiterovih meseca od trenutka izlaska meseca iz senke Jupitera do njegovog dolaska ispred Jupitera, a zatim natrag u isti položaj. Odredio je da taj period iznosi približno 42,5 sati kada se Zemlja nalazi u tački svoje orbite koja je najbliža Jupiteru.

 

Nakon šest meseci Zemlja će se naći na suprotnoj strani orbite oko Sunca, tj biće na najvećem rastojanju od Jupitera, a Jupiter će se na svojoj putanji pomeriti zanemarljivo malo. Remer je sada takođe očekivao da se pomračenja Jupiterovog meseca opet dešavaju u intervalima od po 42,5 sati, ali situacija je bila malo drugačija. On je našao da se pomračenja dešavaju sa sve većim i većim zakašnjenjem kako se Zemlja udaljavala od Jupitera, i nakon šest meseci, kada je ona bila najdalja, ovo zakašnjenje je iznosilo 1000 sekundi.

 

Jedini logičan zaključak koji je Remer mogao da donese bio je da ovo dodatno vreme predstavlja vreme potrebno svetlosti da pređe dodatno rastojanje između Zemlje i Jupitera, odnosno da pređe rastojanje preko prečnika Zemljine orbite. U to vreme verovalo se da prečnik Zemljine orbite iznosi 284 miliona, umesto tačnih 300 miliona, kilometara tako da su Remerovi podaci dali suviše malu vrednost za brzinu svetlosti. Ipak, Remerova metoda je ušla u storiju kao prvo uspešno određivanje brzine svetlosti.

 

Fizova zemaljska metoda

 

Prvo određivanje brzine svetlosti bez upotrebe astronomskih metoda izveo je Fizo u 1849. godini. U osnovi ovaj metod je podsećao na Galilejev pokušaj ali uspeo je da prevaziđe jedini nedostatak Galilejevog eksperimenta – imao je mogućnost tačnog merenja kratkog vremenskog intervala u kome svetlosni zrak prelazi relativno kratko rastojanje na Zemlji.

 

Aparatura za ovaj eksperiment sastojala se od jednog zupčanika koji je okretan sistemom kotura i tegova. Izvor svetlosti bila je upaljena sveća. Na rastojanju od 8 km od sveće nalazilo se jedno ravno ogledalo.

 

U slučaju kada se kotur ne okreće svetlost sveće prolazi između dva zubaca, prelazi put od 8 km do ogledala i vraća se natrag istim putem, opet prolazi kroz isti prorez i stiže do oka posmatrača, koje se nalazi iza sveće.

 

Ako bi se sada zupčanik zarotirao svetlosni snop koji polazi od sveće bio bi iseckan zupcima koji prolaze ispred sveće. Rezultat ovoga biće niz snopova poslatih ka ogledalu, a dužina svakog snopa zavisiće od brzine okretanja zupčanika; što se zupčanik brže okreće snopovi bi bili kraći.

 

Svi ovi snopovi svetlosti putuju do udaljenog ogledala, od njega se odbijaju i istim putem se vraćaju nazad. Kada svetlosni snop stigne nazad do zupčanika on neometano može proći do oka posmatrača, ali isto tako može naići na prepreku, odnosno zubac zupčanika, i tu završiti svoje 16 km dugo putovanje. Jasno je da to da li će posmatrač da vidi svetlosni snop ili ne zavisi od brzine okretanja zupčanika – ako se zupčanik okreće sporo zubac će zakloniti dolazeći svetlosni snop, ali ako je njegova rotacija dovoljno brza svetlost će proći kroz prorez iza zubca i posmatrač će moći d aga vidi.

 

Fizo je baš na ovakav način odredio brzinu svetlosti. Eksperiment je počeo tako što je na početku zupčanik mirovao i on je nesmetano mogao da vidi svetlosni snop koji se vraćao. Kasnije je počeo sve više i više da ubrzava zupčanik i svetlosni snop se izgubio. Kada se snop svetlosti opet pojavio, Fizo je zabeležio brzinu rotacije zupčanika. Znao je da svetlost pređe put od 16 km za vreme koje je potrebno da jedan zubac bude zamenjen sledećim a to vreme je mogao da odredi znajući brzinu rotacije zupčanika koju je već izmerio.

 

Na ovakav način Fizo je dobio da brzina svetlosti iznosi 313.870 km/s, što je za oko 5% više nego prava vrednost, ali bilo je to vrlo precizno merenje za to vreme kada je izvedeno.

 

Majkelsonovo precizno merenje

 

Sigurno najpoznatije merenje brzine svetlosti izvršio je Majkelson 1926. godine. Princip eksperimenta je sličan principu koji je koristio i Fizo, sa tom razlikom što je umesto rotirajućeg zupčanika Majkelson koristio obrtno, mnogostrano ogledalo za seckanje svetlosnog talasa u pojedinačne zrake. Mnogostrano ogledalo je bilo oblika šestougla a na svakoj njegovoj strani bilo je postavljeno po jedno ravno ogledalo; ogledalo je pokretao elektromotor pa je brzina rotacije mogla precizno da se podešava.

 

Na početku eksperimenta sistem ogledala miruje. Svetlost polazi sa sijalice, neometano prolazi paralelno jednoj strani ogledala, stiže do udaljenog ogledala, odbija se, i vraća se nazad istim putem do oka posmatrača. Ako se ogledalo pokrene da rotira nastupiće dve slične situacije kao i kod Fizovog zupčanika – ako ogledalo rotira nedovoljno brzo, sledeća strana ogledala neće zauzeti dobar položaj da omogući odbijenom svetlosnom snopu da stigne do posmatrača, ali ako bi brzina rotacije bila dovoljna sledeće ogledalo bi se našlo u odgovarajućem položaju i svetlosni zrak bi stigao do posmatrača.

 

U slučaju kada posmatrač uspe da vidi svetlost koja se odbila sa udaljenog ogledala obrtno ogledalo ostvari jednu šestinu obrta za vreme koje je potrebno svetlosti da ode i vrati se nazad. Kako je poznata brzina rotacije, lako se određuje vreme putovanja svetlosti, a kada su poznati vreme i pređeni put vrlo je jednostavno odre3diti i brzinu.

 

Majkelson je radi veće preciznosti merenja pored šestostranog ogledala koristio i ogledalo sa 8, 12 i 16 strana. Sva ta ogledala bila su postavljena na planini Maunt Vilson u Kaliforniji. Udaljeno ravno ogledalo bilo je postavljeno na planini Maunt San Antonio, udaljenoj približno 35,5km. Iz razloga što je tačnost rezultata mnogo zavisila od tačnosti merenja rastojanja između ovih ogledala, Služba za obalska i geodetska premeravanja (U.S. Coastal and Geodetic Survey) izmerila je to rastojanje isključivo za Majkelsonov eksperiment sa greškom manjom od 5 cm. Zahvaljujući preciznosti sa kojom je obavljana svaka etapa eksperimenta rezultati se mogu smatrati tačnim do malog dela jednog procenta. Kao rezultat ovog i kasnije izvedenih eksperimenata mi danas znamo da je brzina svetlosti približno 300.000 km/s (ili preciznije 299.792.458 m/s).

 

Izvor

Share this post


Link to post
Share on other sites

Potraga za etrom

 

Ideja o stacionarnom eteru

 

Još mnogo godina pre preciznog merenja brzine svetlosti bilo je poznato da je za prostiranje zvučnih, odnosno mehaničkih talasa, neophodno postojanje neke sredine kroz koju bi isti putovali. Postojanje sredine kroz koju talas putuje uslovljeno je time što se talas prostire prenošenjem vibracija sa jedne čestice na drugu. Kao posledica neophodnosti postojanja sredine bilo je poznato da zvučni talasi ne mogu da putuju kroz vakum, a to je i eksperimentalno potvrđeno. Druga vrsta svima poznatih talasa bili su vodeni talasi za čije je prostiranje bila neophodna voda, ovi talasi bez vode koja ih je nosila nisu mogli da postoje. Nakon svega ovoga potpuno je razumljivo zašto su ljudi smatrali da je i za prostiranje svetlosti, odnosno elektromagnetnih talasa, neophodno postojanje neke sredine kroz koju bi ovi putovali, odnosno mora da postoji neka supstanca šije bi čestice vibrirale i na taj način prenosile svetlosni talas.

 

Ali nasuprot ideji o postojanju neke supstance koja je ispunjavala celokupan prostor univerzuma, pouzdano se znalo da u ogromnom prostranstvu između planeta i zvezda nema nikakvog medijuma, ceo taj prostor bio je vakum. Niko nije mogao da poveruje da svetlost putuje 150 miliona kilometara od Sunca do Zemlje kroz prazan prostor, niko nije verovao da za prostiranje svetlosti nije potreban nikakav medijum, pa su za tog hipotetičkog prenosioca svetlosti stvorili posebnu reč i nazvali su ga lumeniferoznim (svetlosnim) eterom. Prema toj ideju eter je postojao svuda gde su svetlosni talasi putovali, i ispunjavao je sav vasionski prostor koji su do tada svi smatrali da je prazan.

 

Ideja o postojanju etera je svima delovala vrlo logičnom i ubrzo je eter prihvaćen kao jedan od materijala u vasioni. Neki naučnici su čak išli toliko daleko da su pokušavali da izračunaju gustinu etera!

 

Godine 1864. pojavila se potpuno neočekivano dodatna potvrda za postojanje etera. Te godine je Maksvel objavio rezultate svojih matematičkih istraživanja električnih vibracija. On je pokazao da bi neke električne vibracije mogle izazvati stvaranje električnih talasa koji bi putovali kroz prostor, a izračunao je i brzinu kojom bi ti trebali da se kreću, dobijena vrednost za brzinu bila je jednaka izmerenoj brzini svetlosti. Na osnovu svojih istraživanja Maksvel je kasnije, potpuno ispravno, zaključio da svetlost nije ništa drugo neko jedan specijalan tip njegovih elektromagnetnih talasa. Godine 1887. Herc je eksperimentalno potvrdio Maksvelovo matematičko predviđanje postojanja elektromagnetnih talasa.

 

Sada je problem postojanja medijuma kroz koji putuju elektromagnetni talasi bio još ozbiljniji. Naučnici su verovali da mora da postoji neki medijum gde bi boravila električna i magnetna polja, nije se moglo zamisliti da ta polja postoje u vakuumu. Smatralo se da je za prostiranje elektromagnetnih talasa bilo neophodno postojanje nekog medijuma koji bi ih nosio, a jedini logičan medijum bio je eter.

Razumljivo je očekivati da su naučnici tog vremena probali da detektuju eter. Smatralo se da ako bi eter postojao on bi morao da ispunjava sav vasionski prostor, a na osnovu toga zaključeno je da bi on trebao da bude jedina stvar koja se ne kreće.

 

Sve ideje o postojanju etera bile su vrlo obične i lako prihvatljive, trebalo je još samo detektovati taj eter.

 

Ako se bi se nalazili na brodu koji plovi morem i želimo da znamo da li se brod kreće ili ne ona sve što treba da uradimo je da pogledamo da li se voda kreće uz brod ili jednostavno da ispružimo ruku u vodu. Na sličan način naučnici su probali da provere da li se Zemlja kreće kroz eter ili ne, oni su probali da detektuju kretanje etera, ili kako su tu pojavu nazvali eterski vetar. Na nesreću eterski vetar nije moga da se detektuje samo jednostavnim pružanjem ruke u okolni prostor da bi se on osetio.

 

Očekivani efekt etera

 

Kao posledica eterskog vetra morali su da postoje neki efekti za kojima se uporno tragalo. Jedan od najčešće korišćenih efekata u pokušaju detekcije etra bio je vezan sa "pomeranje" svetlosnih talasa koji kroz eter putuju.

 

Pretpostavimo da u žiži jednog teleskopa uhvatimo jednu zvezdu u pravcu kojim se Zemlja kreće po svojoj orbiti. Dalje pretpostavimo da u teleskop ulaze dva svetlosna snopa koja su stigla sa zvezde. Sočiva teleskopa prelamaju ove zrake i oni se seku u žiži unutar teleskopa. Kako se posmatrač, zajedno sa celom planetom, kreće brzinom od 30 km/s ka zvezdi, oko posmatrača će stići u tačku gde je bila žiža u isto vreme kad i svetlosni snopovi stižu u tu tačku i posmatrač će videti zvezdu.

 

Kada posmatrač bude posmatrao istu zvezdu nakon šest meseci, kada se Zemlja bude nalazila na suprotnom kraju svoje orbite, a ne promeni fokus. Situacija će biti sasvim drugačija, Zemlja se sada udaljava od zvezde kroz eter brzinom od 30 km/s. Kako se sada teleskop i posmatrač udaljavaju od dolazećeg svetlosnog talasa posmatračevo oko neće više biti u tački žiže kada svetlosni snop tu stigne, kao posledica ovoga posmatrač neće videti oštru sliku zvezde.

 

Za ovim efektom se uporno tragalo ali niko nije uspeo da ga detektuje.

 

Majkelson-Morlijev eksperiment

 

Bez obzira na sve neuspehe u pokušaju detekcije etera niko nije dovodio u sumnju njegovo postojanje. Svi su smatrali da potreban mnogo osetljiviji eksperiment. Takav eksperiment zamislili su i izveli Majkelson i Morli 1881. godine.

 

majkelson1.gif

 

Eksperiment koji su Majkleson i Morli izveli zasnivao se na vrlo jednostavnom principu. Ako bi smo zamislili takmičenje dva identična aviona. Neka ta dva aviona istovremeno krenu iz tačke A, jedan ka tački B a drugi ka tački C (vidi sliku). Prvi avion treba da leti na sever do tačke B a zatim nazad na jug do tačke A, a drugi na istok do tačke C a zatim nazad u pravcu zapada do tačke A.

 

Pretpostavićemo još da se tačke B i C nalaze na istom rastojanju od A i neka to rastojanje iznosi 800 km. Ako bi maksimalna brzina oba aviona bila 1600 km/h i ako nema vetra lako je zaključiti da će trka završiti za jedan sat, nerešenim rezultatom.

 

Ako bi sada pretpostavili duva vetar sa istoka ka zapadu brzinom od 160 km/h, trka se ne bi završila bez pobednika, a pobednik bi bio prvi avion. Prvi avio bi pobedio iz razloga što bi drugom avionu vetar koji duva "u lice" dopustio da se kreće brzinom od 1440 km/h jer se njegova maksimalna brzina od 1600 km/h odnosi na miran vazduh. U povratku bi drugi avion imao vetar "u leđa" i njegova brzina bi sada bila 1760 km/h, ali kako više vremena provodi krećući se manjom brzinom njegova prosečna brzina bi bila manja od prvog aviona. Naravno, i prvi avion tokom celog puta ima bočni vetar koji malo skreće avion da bi kompenzovao uticaj vetra, pa vetar i ovde dovodi do usporenja, pa i prvi avion ima prosečnu brzinu nešto manju od 1600 km/h, ali veću od drugog aviona.

 

Ako bi se izračunala vremena putovanja oba aviona dobija se da prvi avion završava trku za 1h i 18 sec, a drugi za 1 h i 36 sec.

Lako se zaključuje da u slučaju da su pravac i brzina vetra nepoznati oni mogu da se odrede iz rezultata trke. Upravo na tom principu se zasniva i Majkleson-Morlijev eksperiment. Umesto dva aviona Majkelson i Morli su "organizovali" trku dva svetlosna talasa, koji su međusobno bili normalni.

 

Aparatura koja je korišćena u ovom eksperimentu prikazana je na slici. Aparatura je postavljena tako da se Zemlja kreće u desno i pri tome bi trebalo da se oseti "duvanje" eterskog vetra.

 

majkelson2.gif

 

Svetlosni talas kreće od svetlosnog izvora, udara u poluposrebreno ogledalo koje deli talas na dva talasa podjednakog intenziteta. Talas A ide kroz poluposrebreno ogledalo do ravnog ogledala A, a talas B se reflektuje od poluposrebrenog ogledala do ogledala B. Ova dva pojedinačna talasa odgovaraju avionima iz prethodnog primera. Talas A se reflektuje od ogledala A i vraća nazad do poluposrebrenog ogledala gde se jedna njegova polovina reflektuje do mikroskopa (druga polovina prolazi kroz ogledalo i vraća se do izvora ali to nema značaja za rezultat eksperimenta). Talas B se na identičan način reflektuje od ogledala B, vraća do poluposrebrenog ogledala odakle opet jedna njegova polovina odlazi do posmatračevog mikroskopa. Posmatrač tada registruje oba talasa u mikroskopu i sve što sada preostaje je "foto-finiš".

 

Da bi se izvršila analiza završne pozicije i odredilo koji je talas "pobedio" koristi se jedna pojava zapažena kod talasnog kretanja koja se naziva interferencija. Ako dva talasa ulaze u mikroskop (slika) i ako su njihovi trbusi i doline poravnati (tj. talasi su u "fazi") dolazi do njihovog pojačavanja i posmatrač će videti svetliji talas od bilo kog od pojedinačnih. Ovakav rezultat se naziva konstruktivna interferencija. Ako bi se jedan talas našao neznatno ispred ili za drugog, posmatrač bi video nešto tamniji talas od dolazećih. Ovakav rezultat nazvan je parcijalna interferencija. Treća mogućnost koja moče na nastupi nazvana je destruktivna interferencija. Ovaj tip interferencije nastaje kada se bregovi jednog talasa poklope sa dolinama drugog i tada dolazi do međusobnog poništavanja ova dva talasa. Uređaj koji radi na principu interferencije naziva se inteferometar.

 

Majkelson i Morli su očekivali da će pod uticajem eterskog vetra doći do pomeranja talasa A i B tako da oni više ne budu u fazi, a posmatrač bi trebalo da vidi svetlost slabijeg intenziteta.

 

Majkelson i Morli su ovaj eksperiment izvršili više puta. Ponavljali su eksperiment u različito doba dana, i u različito doba dana i u različito doba godine, ali rezultati su uvek bili identični – eterski vetar nije detektovan.

 

Eksperiment Majkelsona i Morlija je kasnije ponavljan sa sve većom tačnošću , ali rezultati su uvek bili isti.

 

Na ovaj način moderna nauka je bespogovorno verifikovala zaključak Majkelsona i Morlija i sada je opšte prihvaćeno da se eter ne može detektovati.

 

Velika dilema

 

Situacija u nauci je postala prilično zamršena. Čvrsto se verovalo u postojanje etera, ali ne samo što su svi pokušaji da se eter detektuje završili neuspešno, nego su razlozi ponuđeni za objašnjenje neuspeha bili kontradiktorni i nepouzdani. Dakle, da li eter postoji ili ne ? Ako postoji, zašto ga ne možemo detektovati ? A ako ne postoji, zašto ne postoji ?

 

Upravo u takvoj klimi naučnog neraspoloženja i konfuzije dat je odgovor koji je dao veoma jedinstveno, i do tada nezamislivo, objašnjenje da je trebalo biti genije i videti ga. Taj genije bio je Albert Ajnštajn, a sa njim se rodila i Teorija relativnosti.

 

Izvor

Share this post


Link to post
Share on other sites

SPECIJALNA TEORIJA RELATIVNOSTI

 

Početkom XX veka Ajnštajnova teorija relativnosti šokirala je svet. Ova teorija predviđala je drastične promene zakona klasične fizike koji su vekovima bili logični, i niko vekovima nije sumnjao u njihovu ispravnost.

 

Aristotel, Njutn i svi drugi naučnici pre Anštajna verovali su u apsolutno vreme. Smatrali su, naime, da je bespogovorno moguće izmeriti interval između dva događaja, odnosno da bi ovo vreme bilo isto bez obzira na to ko ga meri, pod uslovom da se koristi dobar časovnik. Vreme je bilo potpuno zasebno i nezavisno od prostora. Za većinu ljudi ovo bi bilo zdravorazumsko stanovište. Ali ipak, čovečanstvo je moralo da promeni svoja viđenja prostora i vremena. Iako su, kako izgleda, zdravorazumske predstave sasvim u redu sa stvarima kao što su jabuke ili planete koje se kreću srazmerno lagano, one potpuno gube valjanost kada su posredi stvari koje se kreću brzinom svetlosti ili sasvim blizu nje.

 

Najznačajnija stvar koja je doprinela nastanku Teorije relativnosti bilo je to što je Ajnštajn u fiziku uveo jedan nov pojam, pojam prostor-vremena, ovo ujedinjenje prostora i vremena, tj. posmatranje vremena kao jedne posebne dimenzije, ulazak u jedan nov četvorodimenzionalni prostor, dovelo je do mnogih čudnih pojava.

 

Teorija relativnosti sastoji se od dva glavna dela: Specijalna teorija relativnosti (STR), objavljena 1905. god i Opšta teorija relativnosti (OTR), objavljena 1916. godine. STR razmatra samo predmete ili sisteme koji se, jedni prema drugima, kreću ili konstantnom brzinom (neubrzani sistemi) ili se uopšte ne kreću (brzina jednaka nuli). OTR razmatra predmete ili sisteme koji se jedni prema drugima kreću sa određenim ubrzanjem (ubrzavaju ili usporavaju).

 

Postulati Specijalne teorije

 

Upoznavši se sa svim problemima nastalim tokom vršenja eksperimenata u pokušaju detekcije etera Ajnštajn je izveo dva veoma značajna zaključka. Ti zaključci poznati su kao dva osnovna postulata STR, i oni su temelj na kome se gradi cela teorija.

 

Svi fizički zakoni izražavaju se u istom obliku u svim 
sistemima koji se kreću ravnomerno pravolinijski.

 

Prvi postulat kaže: svi fizički zakoni izražavaju se u istom obliku u svim sistemima koji se kreću ravnomerno pravolinijski. Ovaj postulat predstavlja tzv. Ajnštajnov princip relativnosti, koji Galilejev princip relativnosti uopštava sa mehaničkih na sve fizičke zakone. Iz ovog postulata se takođe izvodi i zaključak da se eter ne može detektovati. Ajnštajn je do ovog postulata došao vrlo jednostavnim razmišljanjem.

 

prvipostulat.jpg

 

Zamislimo čoveka koji se nalazi u vozu i posmatra vagon drugog voza koji se nalazi neposredno pored njega. Ako jedan od ova dva voza krene, čovek bi lako mogao da dođe u zabunu koji se voz zapravo kreće. Naravno, ovde je lako odrediti ko se zapravo kreće, potrebno je samo pogledati bilo koji predmet pored pruge, ali zamislimo sada nekog posmatrača u dalekoj budućnosti. Neka taj čovek krene sa Zemlje na svemirsko putovanje, i neka se on konstantno kreće brzinom od 8.000 km/h u odnosu na Zemlju. Dok on tako krstari kroz prostor i izgubi Zemlju iz vida, odjednom iza sebe opaža drugu raketu, i biva iznenađen lakoćom kojim ga ova raketa pretiče. Vozač ove druge rakete čak može da pomisli da se raketa koju zaobilazi uopšte ne kreće! Kako će ovaj "zvezdani putnik" da dokaže da se kreće? Sve što može da odredi je brzina kojom je druga raketa prošla pored njega, i ništa više od toga. Ako bi ova brzina bila 1.600 km/h može se doći do više različitih zaključaka.

 

Najrealniji zaključak je taj da pošto pilot zna da se on kreće brzinom od 8.000 km/h u odnosu na Zemlju, a da je druga raketa prošla brzinom od 1.600 km/h pored njega, brzina te druge rakete u odnosu na Zemlju 9.600 km/h, ali ovo ne mora biti tačno! To isto tako može da znači da se on sada kreće brzinom od 3.000 km/h a druga raketa brzinom od 4.600 km/h u odnosu na Zemlju. Ili, ma koliko to izgledalo čudno, možda se ova druga raketa uopšte ne kreće u odnosu na Zemlju a da se posmatrač kreće unazad, brzinom od 1.600 km/h!

 

Brzo se dolazi do zaključka da je bez korišćenja nekog "nepokretnog" predmeta radi merenja brzine posmatrača nemoguće reći ko se kreće a ko miruje, ako neko uopšte miruje. Nemoguće je napraviti neki instrument koji bi pokazivao da li se posmatrač u odnosu na nešto kreće ili ne. U stvari ako bi se posmatrač nalazio negde daleko od svih zvezda i planeta, bez ičega što bi mogao da koristi kao referentnu tačku za merenje brzine, on nikad neće saznati da li se kreće ili ne!

 

Ovo je bila činjenica do koje je Ajnštajn došao – svako kretanje je relativno1 (odatle i naziv teorija relativnosti). Nikada ne možemo govoriti o apsolutnom kretanju, već samo o kretanju u odnosu na nešto drugo. I uopšte se ne može reći da se neki predmet kreće tom-i-tom brzinom, već se mora reći da ima tu-i-tu brzinu u odnosu na nešto.

 

 

Lako se može zamisliti razgovor koji će se odvijati negde u budućnosti između oca i njegovog sina koji uživa u putovanju kroz vasionska prostranstva. Otac upozorava sina da svoju raketu ne vozi brže od 1600 km/h, a sin mu odgovara: "U odnosu na Sunce, tata, ili na Sirijus?"

 

Iz ovoga se lako zaključuje zašto stacionarni eter ne može da se detektuje. Ako bi on postojao i ispunjavao celokupnu vasionu, morao bi da miruje, njegovo mirovanje bi bilo apsolutno, a Prvi postulat upravo kaže da ne postoji apsolutno mirovanje.

 

drugipostulat.jpg

 

Ajnštajn je pojam "relativno" vrlo slikovito objasnio jednom poznatom rečenicom: "Ako držite ruku na usijanoj peći, minuti vam izgledaju kao sati, a ako ste sa lepom devojkom sati vam izgledaju kao minuti"             

 

Brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista je u svim inercijalnim sistemima

 

Drugi postulat STR kaže da je brzina svetlosti, odnosno maksimalna brzina prenošenja interakcije, ista u svim inercijalnim sistemima. Ako bi se jedan dečak nalazio na platformi i bacio loptu brzinom od 24 km/h to znači da bi se lopta u odnosu na njega kretala tom brzinom bez obzira da li se platforma kreće ili ne. Ako bi se platforma kretala, na primer, prema mostu brzinom od 8 km/h a dečak baci loptu prema mostu brzina lopte i platforme će se sabrati i dati ukupnu brzinu lopte u odnosu na most, i tom brzinom će lopta udariti u most. Ako bi se platforma udaljavala od mosta a dečak opet bacio loptu ka mostu brzina lopte u odnosu na most bila bi jednaka razlici brzina platforme i lopte.

 

U malo složenijoj situaciji, gde ulogu dečaka igra neka daleka zvezda, mosta – teleskop na Zemlji, a ulogu lopte preuzima svetlosni talas koji putuje sa zvezde do Zemlje situacija se malo komplikuje. Svetlosni talas sa zvezde putuje brzinom od 300.000 km/s u odnosu na zvezdu. Ako bi se zvezda i Zemlja približavale relativnom brzinom od 160.000 km/s, analogno situaciji sa dečakom, očekivali bi smo da se brzine sabiraju, odnosno svetlosni talas bi trebalo da "udari" u teleskop brzinom od 460.000 km/s, i obrnuto ako se zvezda i Zemlja udaljavaju brzine bi trebalo da se oduzimaju i daju 140.000 km/s. Na ovakav način posmatrač bi odredio dve različite brzine svetlosti, i to je potpuno ispravno sa stanovišta Njutnove fizike, ali je u suprotnosti sa Drugim postulatom. Prema Drugom postulatu brzina svetlosti u oba slučaja mora da iznosi 300.000 km/s.

 

Iskaz ovog postulata bio je revolucionaran. Ipak, Ajnštajn ga je uzeo kao jedan od osnovnih postulata STR, bez obzira na to što je izgledalo da je u suprotnosti sa zdravim razumom, jer su svi eksperimenti navodili na taj zaključak. Verovalo se da je to jedan od osnovnih zakona vasione.

 

.....

Share this post


Link to post
Share on other sites

.....

 

Kako su ova dva postulata bila u takvoj suprotnosti sa opštim mišljenjem tog vremena, bilo je neophodno mnogo više od njihovog predstavljanja javnosti. Jer, bez dalje potpore, oni bi samo bili interesantni a ne bi dokazivali ništa: Tako su, polazeći od ovih postulata izvedene mnoge jednačine koje su ne samo objašnjavale određene fenomene, nego su omogućavale i izvesna predviđanja, koja su kasnije bila eksperimentalno verifikovana. To je ustvari najstrožija provera svake teorije: ne samo da omogući zadovoljavajuće objašnjenje svih zagonetki nekog problema, nego da učini i potpuno nova i drugačija predviđanja koja će tek kasnije biti eksperimentalno potvrđena.

 

Da bi se premostila praznina između ovih postulata, koji su sami po sebi apstraktni, i jednačina koje vode do potvrde i praktičnih primena teorije, postulati su morali biti ugrađeni u fizičku situaciju podložnu eksperimentalnoj proveri. Kako se postulati odnose na predmet koji se kreće konstantnom brzinom u odnosu na posmatrača i na ponašanje svetlosnih talasa, ovo se najbolje može postići ako zamislimo posmatrača koji "opisuje" predmet koji se kreće konstantnom brzinom u odnosu na njega. Ponašanje svetlosnih talasa će uticati na opis jer je refleksija svetlosnih talasa od predmeta do posmatrača ono što omogućava posmatraču da vidi i opiše predmet. Posmatračev "opis" predmeta sastojaće se od fizičkih karakteristika koje se mere posmatračevim instrumentima (npr. dužina, masa, energija, vreme...)

 

Predviđanja numeričkih vrednosti vrednosti ovih karakteristika u skladu sa STR stavljaju se u matematički oblik da bi mogla da se uporede sa stvarnim merenjima.

 

 

lorenc.jpg

 

Ako pretpostavimo da se dve identične rakete A i B kreću jedan prema drugoj konačnom brzinom. Obe rakete su opremljene najelementarnijim naučnim instrumentima, lenjirom i časovnikom, koji su prethodno upoređeni tako da se zna da su instrumenti u raketi A identični instrumentima u raketi B. Analiza počinje u trenutku kad B prolazi pored A, njihovi časovnici pokazuju isto vreme, i u tom trenutku događa se eksplozija obližnje supernove. Ni raketa A ni raketa B još nisu svesne da je zvezda eksplodirala, jer svetlosni talasi još nisu stigli do njih.

 

Posle kraćeg vremena svetlosni talasi nastali prilikom eksplozije stižu do raketa A i B koje će u tom trenutku biti na rastojanju x. Prema II postulatu posmatrači na A i B vide svetlosne talase koji dolaze istom brzinom u odnosu na njih, tako da ako c predstavlja brzinu svetlosnog talasa za A, a c' za B, onda se može reći da je c=c'. Sada se unesu rastojanja d i d' (između zvezde i posmatrača) i vremena koja pokazuju njihovi časovnici t i t', i analiza produži da bi se uračunalo njihovo međusobno rastojanje, njihova relativna brzina, njihova vremena, brzina svetlosti, itd.

 

Jednačine koje se dobijaju nazivaju se jednačine Lorencovih transformacija, jer je Lorenc prethodno došao do istih jednačina na osnovu svoje teorije. Koristeći jednačine Lorencovih transformacija možemo sada predvideti rezultate koje će posmatrač sa jedne rakete dobiti za masu, dužinu i td. druge rakete. Kako postulati sadrže rezultate koji su u suprotnosti sa svakodnevnim iskustvom, rezultati koji se dobijaju na osnovu Lorencovih transformacija mogu biti neočekivani i naizgled čudni. Razlog što se Teorija relativnosti, uopšte uzev, smatra neshvatljivom, nije to što je teško razumeti njene rezultate, nego što je u njih teško poverovati.

Share this post


Link to post
Share on other sites

Kontrakcija dužine

 

Ako bi posmatrač na raketi A bio u mogućnosti da izmeri dužinu rakete B kada se one jedna prema drugoj kreću brzinom v, matematički rezultat će predviđati da će B izgledati kao da se skratila, a njena dužina biće data formulom:

 

f1.gif

 

gde je L' dužina koju A dobija za B, a L je stvarna dužina B, v njihova relativna brzina, a c brzina svetlosti.

 

g_duzina.gif

 

Ako bi rakete A i B imale dužinu od po 5 metara kada jedna u odnosu na drugu miruju. Kada se rakete udaljavaju brzinom od 150.000 km/s onda se na osnovu jednačine (1) određuje da je prividna dužina rakete B, merena sa A, 4,33 metara; ako bi se udaljavale brzinom od 260.000 km/s onda će gledano sa rakete A dužina rakete B biti približno 2,5 metara.

 

Ista ova formula važi i ako posmatrač iz rakete B meri dužinu rakete A. Na rezultat ne utiče to da li se rakete udaljavaju jedna od druge ili se približavaju. Rezultat zavisi samo od njihove relativne brzine.

 

Ako bi posmatrač na reketi A merio dužinu svoje rakete bez obzira na kretanje rakete B on će uvek dobiti da je dužina njegove rakete 5 metara, jer se rakete ne kreće u odnosu na samu sebe. Isto važi i za posmatrača u raketi B, za njega će dužina rakete B uvek iznositi 5 metara.

 

Ovaj efekat kontrakcije dužine može se jednostavno iskazati: uvek kad se jedan posmatrač kreće u odnosu na drugog, bez obzira da li se približava ili udaljava, obojici će izgledati da se onaj drugi skratio u pravcu kretanja. Međutim, nijedan posmatrač neće zapaziti nikakvu promenu u svom sistemu.

 

Efekat kontrakcije dužine zapaža se samo pri brzinama koje su približne brzini svetlosti. Kako su skoro sve brzine poznate na Zemlji, u svakodnevnom životu, nemoguće je zapaziti efekat kontrakcije. Ako bi se na primer avion kretao brzinom od 1.200 km/h u odnosu na posmatrača, na osnovu jednačine (1) može se izračunati da će se on skratiti za nekoliko milionitih delova milionitog dela centimetra, otprilike za prečnik jednog atomskog jezgra. Ovako mala skraćenja nemoguće je detektovati ni najsavršenijim instrumentima, a kamoli golim okom.

 

Efekat skraćivanja se iz istorijskih razloga još naziva i Ficdžerald-Lorencova kontrakcija, i on je slikovito opisan, ne baš uspelim, stihovima:

 

Bio jednom jedan momak po imenu Džon. 
U mačevanju nenadmašan beše on. 
Tako mu je bila brza reakcija, 
da je Ficdžeraldova kontrakcija 
do balčaka njegov rapir skratila!

Share this post


Link to post
Share on other sites

Porast mase sa brzinom

 

Pretpostavimo sada da rakete A i B imaju jednaku masu kada su na Zemlji i kada su jedna prema drugoj u relativnom mirovanju. Neka masa raketa iznosi po 1.000 kg. Ako posmatrač iz rakete A meri masu rakete B kada se one relativno kreću, videće da se masa rakete B povećala i da je njen iznos dat formulom:

 

f2.gif

 

gde je m' vrednost koju A dobija za masu B, m je prvobitna masa B ili, kako se drugačije ona naziva, masa u mirovanju, v je njihova relativna brzina, a c brzina svetlosti. Na osnovu jednačine (2) dolazi se do zaključka da ako rakete A i B imaju masu od po 1.000 kg dok miruju na Zemlji, onda će kad se budu kretale relativno brzinom od 150.000 km/s izgledati da B ima masu od 1.200 kg posmatrano iz rakete A. Pri brzini od 260.000 km/s posmatrač iz rakete A izmeriće da B ima masu od oko 2.000 kg !

 

 

g_masa.gif

 

Ako bi posmatrač iz rakete B takođe merio masu rakete A dok se one relativno kreću jedna u odnosu na drugu, zaključio bi da se i masa rakete A povećava saglasno formulu (2). Ako posmatrači u raketi A i B mere masu svoje rakete oni će uvek dobiti da masa njihove rakete iznosi tačno 1.000 kg, nezavisno od toga da li se raketa kreće ili ne, jer se ona sigurno ne kreće u odnosu na samu sebe.

 

Kao slikovit primer porasta mase sa brzinom može se navesti brod koji plovi okeanom. Brod za sobom uvek povlači izvesnu količinu vode. Što brže plovi, više vode će povlačiti za sobom. Zbog toga izgleda kao da brod povećava svoju masu što brže plovi, jer voda koju povlači za sobom kreće se zajedno sa brodom i postaje deo brodskog tovara.

 

Treba napomenuti i to da porast mase ne znači da se predmet povećao u smislu fizičkih dimenzija (dužina, širina. visina), čak štaviše ne samo da se predmet nije povećao on je postao manji!

Share this post


Link to post
Share on other sites

Sabiranje brzina

 

Neka se posmatraču istovremeno približavaju voz i automobil, i to oba brzinom od po 100 km/h u odnosu na posmatrača. Prema tome, ako bi posmatrač merio brzinu voza i automobila dobio bi da ta brzina iznosi tačno 100 km/h. I obrnuto ako bi mašinovođa ili vozač automobila merili svoju brzinu u odnosu na posmatrača dobili bi isti rezultat. Ali, ako bi mašinovođa izmerio svoju brzinu u odnosu na automobil dobio bi da ona iznosi 200 km/h, jer se i voz i automobil kreću u odnosu na nepokretnog posmatrača brzinom od 100 km/h. Isto važi i za vozača automobila, i on se u odnosu na voz kreće brzinom od 200 km/h. Ovakve situacije su vrlo česte u svakodnevnom životu i redovno se koristi jednačina:

 

f3.gif

 

gde je vAB relativna brzina kojom se A kreće u odnosu na B (tj. brzina voza u odnosu na automobil, ili obrnuto), vA i vB je brzina A, tj. B, u odnosu na posmatrača.

 

100-vs-99.jpg

 

Ako bi se posmatrač sada našao u sličnoj situaciji samo što bi umesto voza posmatrao svemirski brod A koji se kreće brzinom svetlosti, a umesto automobila drugi svemirski brod B koji bi putovao brzinom jednakoj polovini brzine svetlosti on bi lako odredio brzine ova dva svemirska broda. Piloti u brodovima takođe lako određuju svoje brzine u odnosu na posmatrača, ali šta će se desiti kada pilot jednog broda, npr. broda B, proba da odredi svoju brzinu u odnosu na drugi brod A? Vođen prethodnom logikom od bi dobio da brzina broda B u odnosu na A iznosi 1,5c, tj 450.000 km/s. Ako bi brzina broda B u odnosu na posmatrača bila 0,99999...c i pilot sada proba da odredi brzinu u odnosu na brod A on bi trebalo da dobije da je brzina 1,99999...c ali prema STR ne važi jednačina (3) i relativna brzina broda B u odnosu na brod A biće jednaka brzini svetlosti u oba ova slučaja !

 

l-vs-099-l.jpg

 

Specijalna teorija relativnosti daje jedan novi zakon za određivanje relativnih brzina i taj zakon iskazan je formulom:

 

f4.gif

 

gde su vA i vB relativne brzine kojima se A i B kreću prema nepokretnom posmatraču, a c je brzina svetlosti.

 

Ako bi na primer uzeli da brzine vA i vB iznose po 160.000 km/s, relativna brzina tela A prema telu B bila bi 250.000 km/s prema jednačini (4), a ne 320.000 km/s kako daje jednačina (3). Lako se uočava da ovde dve jednačine daju dve različite vrednosti za jednu istu stvar pa prema tome ne mogu obe da budu ispravne! Za sve praktične primene jednačina (3) se može smatrati ispravnom kada su brzine znatno manje od brzine svetlosti, ali kada su brzine približne brzine svetlosti mora se koristiti jednačina (4). Videli da razlika u vrednostima koje daju ove dve jednačine pri brzinama od 160.000 km/s iznosi 70.000 km/s, ali ako bi brzine bile na primer 160 km/h, rezultat koji daje jednačina (3) razlikovao bi se od rezultata jednačine (4) za oko dva milionita dela santimetra.

Share this post


Link to post
Share on other sites

Maksimalna moguća brzina

 

Od svih predviđanja koja proizilaze iz STR, verovatno je najčudnije ono da postoji određena brzina preko koje se ništa ne može kretati. Koja je to brzina lako se može naslutiti iz jednačine (1), koja određuje skraćenje predmeta sa brzinom. Na osnovu te jednačine vidi se da predmet postaje sve kraći i kraći kako se brzina povećava. Ako brzina postaje sve veća i veća predmet će se sve više smanjivati, kada njegova brzina bude približna brzini svetlosti dužina će biti približna nuli, u onom trenutku kada brzina postane jednaka brzini svetlosti predmet će nestati.

 

Ako pretpostavimo da brzina nastavi da raste. Ako bi brzina bila dva puta veća od brzine svetlosti, tj. v = 2c, pod korenom se dobija –3, odnosno dužina predmeta je sada prvobitna brzina pomnožena sa korenom iz –3. Kako je kvadratni koren iz negativnog broja imaginaran broj to znači da će i dužina predmeta biti imaginarna, tj. predmet neće postojati.

 

Na osnovu jednačine (2) moguće je odrediti šta će se dešavati sa masom predmeta kada se njegova brzina približava brzini svetlosti. Sa porastom brzine, izraz pod korenom se smanjuje. Kako vrednost razlomka raste kako mu se imenilac smanjuje, masa predmeta raste. Ako brzina v toliko poraste da se izjednači sa brzinom svetlosti, onda će imenilac postati jednak nuli, što znači da će masa postati beskonačno velika.

 

Iz ovoga moguće je izvući samo jedan zaključak – da je brzina svetlosti maksimalna moguća brzina. Nijedan predmet ne može putovati brže od svetlosti, jer ne samo što mu se dužina smanjuje na nulu nego će i njegova masa postati beskonačno velika. Ustvari, tačnije je reći da se materijalni predmeti koji su poznati u svakodnevnom životu nikada ne mogu kretati brzinom svetlosti jer bi njihova masa tada postala beskonačno velika, što znači da bi bilo potrebno beskonačno mnogo energije da se dovedu do te brzine.

 

Na osnovu ovoga vidi se zašto je neophodna jednačina (4). Ako bi koristili samo jednačinu (3) u nekim slučajevima relativna brzina dva tela mogla bi da bude veća od brzine svetlosti, što je nemoguće. Bez obzira na brzinu kojom se dva predmeta kreću u odnosu na nekog posmatrača, njihova relativna brzina uvek je manja od brzine svetlosti.

 

Ovakvi iznenađujući rezultati koje daje STR iskazani su i stihovima:

 

Kad je jednog jutra jedna dama mlada 
na relativno putovanje pošla, 
brže nego svetlost kretala se tada 
pa je sa tog puta, sasvim iznenada, 
prethodnoga dana kući svojoj došla.

Share this post


Link to post
Share on other sites

Ekvivalentnost mase i energije

 

Najznačajnije predviđanje STR bilo je to da je srazmerno mala količina mase ekvivalentna ogromnoj količini energije. Danas je dobro poznato da je prvi ubedljiv dokaz ovog predviđanja bila eksplozija prve atomske bombe kod Alamogorda (Nju Meksiko, SAD) 16. jula 1945. godine.

 

12qua01.jpg

 

Kako STR predviđa da sa porastom brzine raste i masa tela, zaključuje se da i energija tela mora da raste jer masivniji predmet ima veću energiju od lakšeg ako su im brzine jednake. Moguće je pokazati da je dodatna energija, koja je povezana sa dodatnom masom, jednaka porastu mase pomnoženim sa kvadratom brzine svetlosti. Na osnovu ovakvog razmišljanja Ajnštajn je zaključio da je sva masa povezana sa energijom, a ta veza data je njegovom čuvenom formulom:

 

f5.gif

 

gde je E ekvivalentna energija, m masa tela, a c brzina svetlosti. Drugim rečima, ako bi se masa bilo koje supstance pretvorila u energiju, bez ostatka, iznos energije koji će se dobiti dat je formulom (5). Na primer ako bi se u jednačinu uvrstio 1 kg uglja, za energiju se dobija 250 milijardi kilovat-časova, to je približno jednako energiji koju proizvedu sve elektrane u SAD za mesec dana. Kafena kašičica ugljene prašine bila bi dovoljna da najveći brod koji plovi okeanima nekoliko puta pređe rastojanje od Njujorka do Evrope i natrag.

 

Iz svakodnevnog života svima je poznato da se prilikom sagorevanja uglja oslobađa neuporedivo manja količina energije. Da li to ukazuje na neispravnost STR? Prilikom običnog sagorevanja uglja energija koja se oslobađa se energija koja nastaje kao rezultat hemijskog procesa, dolazi samo do preuređivanja i novog vezivanja atoma i molekula, ali ne dolazi do merljive konverzije mase u energiju jer se ugalj pretvara u čađ, pepeo, dim, a ne nestaje. Kad bi se svi ovi krajnji produkti izmerili njihova ukupna masa opet bi bila 1 kg. Upoređivanjem količine energije koja bi nastala pri pretvaranju 1 kg uglja u energiju i običnog sagorevanja iste mase uglja vidi se da se pri sagorevanju oslobađa tri milijarde puta manje energije. Naravno, proces u kome se znatna količina mase pretvara u energiju je potpuno drugačije prirode od običnog sagorevanja.

Share this post


Link to post
Share on other sites

Vreme u specijalnoj teoriji relativnosti

 

Specijalna teorija relativnosti je podstakla mnogo drugačiji način razmišljanja o prostoru. Pokazala je da dužina, masa i energija nego tela nisu stalne već da su ove veličine usko povezane sa brzinom. Ali, Ajnštajnova Teorija je pojam vremena uvela kao novu "dimenziju". Možda najveći doprinos STR bio je vezan za doprinos koji je dala drugačijem shvatanju pojma vremena.

 

Kako se prema STR ponaša vreme može se videti na istom primeru koji je i do sada korišćen. Časovnici na raketama A i B pokazuju isto vreme u trenutku kada su rakete jedna pored druge, neka je, na primer, u tom trenutku bilo 12 časova. Ovo početno vreme može se nazvati nultim vremenom.

 

g_vreme.gif

 

Kako vreme prolazi, rastojanje između A i B se povećava pošto se rakete kreću relativno jedna u odnosu na drugu, i posle nekog konačnog vremenskog intervala rastojanje između rakete A i rakete B iznosiće x. Ako posmatrač na A tada pogleda na svoj časovnik i uporedi sa časovnikom na B, biće iznenađen zato što ova dva časovnika ne pokazuju isto vreme – onaj koji se nalazi na B kasni. Ovu pojavu predviđa STR jer matematički rezultati pokazuju da se vreme koje pokazuju časovnici ponaša prema jednačini:

 

f6.gif

 

gde je t' vreme koje posmatrač A "vidi" na časovniku B, a t vreme koje posmatrač A očitava na svom časovniku. Ako se pretpostavi da je relativna brzina kojom se raketa A i B udaljavaju 150.000 km/s onda će posmatraču na raketi A izgledati da časovnik na B radi za približno 10% sporije, tj ako onaj na A pokazuje 1 čas, časovnik na B će pokazivati 54 minuta; uvek kad posmatrač na A pogleda svoj časovnik, onaj na raketi B će pokazivati 9/10 tog vremena. Ako bi relativna brzina bila 260.000 km/s onda se prema jednačini dobija da bi časovnik na B pokazivao samo polovinu vremena koje pokazuje časovnik A. Što je relativna brzina veća časovnik na raketi B će se kretati sve sporije i sporije, bez obzira da li se rakete približavaju ili udaljavaju.

 

Naravno, i ako bi posmatrač koji putuje raketom B uporedio vreme na svom časovniku i onom u raketi A, dobio bi da časovnik u raketi A kasni, a to kašnjenje bi takođe bilo dato jednačinom (6).

 

 

Ovaj efekat kašnjenja časovnika u STR se naziva dilatacija vremena i ona nastaje onda kada se dva posmatrača kreću relativno jedan prema drugom konstantnim brzinama, tada svakom od njih izgleda da časovnik onog drugog kasni.

 

Iz ovih primera može se izvesti zaključak da razlog časovnici A i B kasne jadan u odnosu na drugi nije samo u specifičnom ponašanju svetlosnih talasa već i uzrok toga i izvestan vremenski interval neophodan svetlosnim talasima da putuju od jednog do drugog časovnika. Efekat dilatacije vremena odgovoran je za jedan potpuno drugačiji pogled na vreme od onog koji korišćen ranije. Ranije se uvek smatralo da je vreme isto za sve posmatrače, ma gde se oni nalazili i ma kako se kretali, vreme je proticalo jednakom brzinom za svaku osobu i za svaki predmet u celoj vasioni. Vreme je bilo apsolutno. STR je pokazala da ovo shvatanje nije bilo tačno. Ona je pokazala da vreme protiče različitom brzinom za dva posmatrača koji se, jedan u odnosu na drugog, nalaze u relativnom kretanju.

 

Međutim, STR je pokazala da je vreme različito i za posmatrače koji jedan u odnosu na drugog miruju, ali koji se nalaze na velikoj udaljenosti jedan od drugog.

 

 

aldebaran.jpg

 

Ako bi dva posmatrača, jedan koji se nalazi na Zemlji i drugi koji se nalazi u blizini zvezde Aldebaran (u sazvežđu Taurus), posmatrali eksploziju supernove na zvezdi Betelgeuse (u sazvežđu Orion). Rastojanje od Zemlje do zvezde Betelgeuse iznosi 300 svetlosnih godina, od Betelgeuse do Aldebarana je 250 svetlosnih godina, a Aldebarana do Zemlje rastojanje je 53 svetlosne godine.

 

Neka se eksplozija supernove desi na primer 2000 godine (prema načinu kako mi merimo vreme na Zemlji). Ljudi na Zemlji ne bi videli blesak eksplozije te godine, jer je Betelgeuse udaljena 300 svetlosnih godina, što znači da bi svetlosnim talasima nastalim pri eksploziji bilo potrebno 300 godina da stignu do naše planete. To je jedini način da ljudi na Zemlji saznaju da je zvezda uništena. S druge strane, neko u okolini Aldebarana bi istu eksploziju video 2250. godine, jer je Aldebara udaljen 250 svetlosnih godina od Betelgeuse.

 

Lako se uočava činjenica da ovaj događaj nije simultan (istovremen) za tri različita mesta, jer svako događaj posmatra u drugo vreme, čak se možda može reći da vreme putuje brzinom svetlosti.

 

Pored velikih rastojanja u prostoru do razlike u simultanosti događaja može doći i pri malim rastojanjima ali onda kad su relativne brzine posmatrača približne brzini svetlosti. STR je pokazala da ako su dva događaja istovremena za jednog posmatrača ne moraju biti istovremena za sve posmatrače, čak je moguće da i redosled događaja za različite posmatrače bude različit.

 

dogadjaj.jpg

 

Ako se na primer dva posmatrača nalaze u identičnim raketama A i B i putuju jedan prema drugom brzinom v, koja je nešto manja od brzine svetlosti, u odnosu na stacionarnog posmatrača C koji se nalazi na pola puta između ove dvojice. Na podjednakom rastojanju od posmatrača C, sa leve i desne strane, nalaze se i dve sijalice L i R. U trenutku kada rakete prolaze pored sijalica one se pale.

 

Kada posmatrač A prođe pred sijalice L ona će se upaliti, u istom tom trenutku pali se i sijalica R pošto je pored nje prošla raketa B. Pošto je, po pretpostavci, rastojanje od L do posmatrača C jednako rastojanju od R do C, vreme koje je potrebno da svetlost sa upaljenih sijalica L i R stigne do C je jednako, pa će događaj paljenja ove dve sijalice za posmatrača C biti simultan (istovremen). Za posmatrače u raketama A i B situacija će biti malo drugačija. Rastojanje koje treba da pređe svetlost sa sijalice L je daleko manje od rastojanja potrebno svetlosti sa sijalice R da stigne do posmatrača A. Zbog razlike u dužini potrebnog vremena posmatrač A prvo će videti da se upalila sijalica L a tek kasnije će videti paljenje sijalice R. Posmatrač u raketi B će registrovati sličnu situaciju, sa tom razlikom što će njemu izgledati da se prvo upalila sijalica R a zatim L.

 

Ova situacija pokazuje dva događaja koja si simultana za stacionarnog posmatrača, a nisu simultana za druga dva posmatrača. Ustvari, sa tačke gledišta posmatrača A, prvo se odigrao događaj L a zatim R, a sa tačke gledišta posmatrača B događaj R je prethodio događaju L. Niko ne može reći koji se događaj "stvarno" odigrao prvi ili su se događaji možda odigrali istovremeno, jer su sva tri posmatrača jednako upravu i nijedan od ova tri pogleda nema prednosti u odnosu na druge. STR je tako pokazala neispravnost vekovima stare ideje o istovremenosti događaja, prema kojoj dva događaja, ako su istovremena za jednog posmatrača, moraju biti istovremena i za sve ostale posmatrače. Redosled događaja je funkcija položaja posmatrača i relativne brzine u odnosu na sve druge posmatrače. Istovremenost je relativna stvar, ne postoji apsolutno vreme.

 

(Zamislimo sada jednog u vozu koji putuje ogromnom brzinom, približnom brzini svetlosti. Putnik sedi tačno na sredini vagona. Na početku i kraju vagona nalaze se vrata. Kada se vrata otvore pored njih se upali sijalica. U jednom trenutku (istovremeno za posmatrača u vagonu) otvaraju se prednja i zadnja vrata vagona. Posmatrač koji stoji na pruzi, iza voza, neće ova dva događaja videti kao istovremena već će prvo videti onaj koji je njemu bliži, znači prvo će videti da je neko ušao na zadnja vrata vagona pa tek onda na prednja. Ova razlika u odnosu na posmatrača u vagonu posledica je činjenice da je svetlosti koja pokazuje da je neko ušao na prva vrata potrebno da pređe duži put do posmatrača na pruzi i kaže mu: “hej, neko je ovde ušao!”. Ne samo da zavisno od posmatrača ovi događaji mogu da budu istovremeni ili ne, može se desiti da i njihov redosled bude različit – posmatrač koji bi se nalazio ispred voza prvo bi video da je neko ušao na prednja pa tek onda na zadnja vrata. link )

 

Naravno treba naglasiti i to da što je veće rastojanje u prostoru između mesta odigravanja dva simultana događaja veća će biti moguća razlika u vremenu između ta dva događaja kako ih vide različiti posmatrači pod različitim uslovima. I obrnuto, ako se rastojanje između dva "istovremena" događaja smanji do iščezavanja, tj. ako se događaji dešavaju na istom mestu , svi posmatrači, bez obzira na njihove položaje i relativne brzine, složiće se u pogledu istovremnosti ovakva dva događaja. Na primer, ako bi došlo do sudara dve rakete, svi posmatrači će videti taj sudar kao jedan usamljen događaj. Bilo bi smešno, a i protivno svim zakonima fizike ako bi bilo koj posmatrač tvrdio da se jedna raketa sudarila pre druge bez fizičkog uzroka.

Share this post


Link to post
Share on other sites

Paradoks blizanaca

 

Predviđanja STR o dilataciji vremena navode na neke vrlo zanimljive, a možda i zastrašujuće ideje. Efekat dilatacije vremena mogao bi da ima neke vrlo interesantne primene za vasionska putovanja. STR ne samo da predviđa da će na raketi koja se kreće relativno brzinom bliskoj brzini svetlosti samo vreme proticati sporije, ona takođe predviđa da će SVI procesi biti usporeni. To znači procesi varenja hrane, biološki procesi, atomska aktivnost – sve će biti usporeno!

 

Ako bi na primer neki "zvezdani putnik" u dalekoj budućnosti odlučio da krene na "godišnji odmor" na primer do zvezde Arcturus (sazvežđe Bootes, Pastir) koja je udaljena 33 svetlosne godine. Ako bi putovao brzinom bliskom brzini svetlosti on će na Arcturus stići za malo više od 33 godine, ali po vremenu na Zemlji, ako bi odmah krenuo natrag na Zemlju će stići približno 66 godina nakon odlaska.

 

Kako se raketa celo vreme kretala ogromnom brzinom u odnosu na Zemlju svi procesi na raketi biće usporeni, putniku u raketi neće izgledati da je proteklo 33 godine za put u jednom smeru, on će stići u blizinu Arcturusa otprilike baš u vreme ručka, a kad se bude vratio na Zemlju izgledaće mu da je prošao samo jedan dan! Ali, ljudima na Zemlji to će biti 66 godina, ljudi na Zemlji će biti 66 godina stariji.

 

Jedan rezultat koji predviđa STR bio je izvor velike nedoumice i izvesnog neslaganja od vremena svog predstavljanja. To je tzv. paradoks blizanaca ili vremenski paradoks.

 

Pretpostavimo da od dva blizanca jedan odlazi na putovanje do neke daleke zvezde i natrag a drugi ostaje na Zemlji. Neka je ta zvezda udaljena 4 svetlosne godine od Zemlje, a da se raketa kreće prosečnom brzinom koja je jednaka 4/5 brzine svetlosti. Ukupno vreme za njeno putovanje biće tada oko 10 godina.

 

Ako uporedimo brzinu proticanja vremena za blizanca u raketi sa brzinom proticanja vremena na Zemlji, na osnovu jednačine (6) dobija se:

 

ft.gif

 

Ovo znači da iako je putovanje trajalo deset godina prema časovniku blizanca na Zemlji, prema časovniku onog u raketi putovanje je trajalo samo šest godina. Po povratku sa puta blizanac će shvatiti da nije ostario onoliko kolko i njegov brat koji je stao na Zemlji.

Paradoks se ovde ogleda u tome da pošto su sva kretanja relativna može da se smatra da je Zemlja otišla u svemirski prostor u pravcu suprotnom od rakete i vratila se dok je raketa mirovala. Na osnovu takvog razmatranja kretanja dolazi se do suprotnog zaključka – blizanac u raketi čekaće 10 godina na povratak svog brata, koji će misliti da je u putovanju (sa Zemljom) proveo samo šest godina.

 

Očigledno je da ova dva tumačenja ne mogu istovremeno biti tačna. Upravo ova kontradikcija predstavlja tzv. paradoks blizanaca.

Rešenje paradoksa je vrlo jednostavno, tačnije paradoks uopšte ne postoji pošto ove dve situacije nisu simetrične, pa nisu ni matematički reverzibilne. Razlog nepostojanja simetrije je taj što raketa na svom putovanju trpi određena ubrzanja, a pretpostavka da Zemlja odlazi na putovanje nije ispravna jer bi u tom slučaju Zemlja morala da trpi odgovarajuća ubrzanja umesto rakete, a poznato je da se to ne dešava.

 

STR neizbežno vodi do zaključka da će za vasionskog putnika na kružnom putovanju proći ukupno manje vremena, nezavisno od načina merenja, nego za ljude koji ostaju na Zemlji. Svaki putnik će se na Zemlju vratiti manje ostareo nego oni koji su ostali d aga čekaju. Ukupan iznos usporenja vremena zavisiće od brzine rakete u odnosu na Zemlju i ukupnog pređenog rastojanja za vreme puta.

 

Do fizičke osnove ovakvog zaključka može se doći poređenjem onoga što svaki blizanac vidi kad posmatra svetlosne talase primljene iz niza događaja koji se dešavaju u sistemu onog drugog.

 

Tokom prve polovine putovanja, zbog brzine kojom se raketa udaljava od Zemlje, svetlosni talasi događaja na Zemlji stizaće do rakete sporijim tempom, učestalošću, nego kad bi raketa mirovala. Za brzinu rakete od 4/5 brzine svetlosti, ovo usporenje je dato formulom za tzv. relativistički Doplerov pomak, prema kojoj će učestalost biti 1/3 od normalne. Na sličan način za vreme povratka blizanac u raketi posmatra događaje na Zemlji kao da se odigravaju tri puta bržim tempom. Tokom celog putovanja blizanac na raketi registruje događaje na Zemlji kao da se odigravaju prosečnim tempom od 5/3 (što je prosek za od jedne trećine i tri). Znači, rezultat je da blizanac na raketi zapaža da vreme na Zemlji protiče u proseku brže nego na raketi, pri čemu tačan odnos iznosi 5/3, zbog toga će deset godina na Zemlji biti kao šest godina na raketi.

 

Situacija koju vidi blizanac na Zemlji je obrnuta. On svetlosne talase događaja koji se na raketi odigravaju tokom prve polovine putovanja prima ukupno devet godina. To je zbog toga što raketi treba pet godina Zemaljskog vremena da stigne do zvezde i još četiri godine su potrebne svetlosnim talasima da stignu sa udaljene rakete do Zemlje, jer se raketa nalazi na rastojanju od četiri svetlosne godine. Tokom ovih devet godina blizanac na Zemlji posmatra događaje tri puta sporije od normalnog tempa, u skladu sa relativističkom formulom Doplerovog pomaka.

 

Događaje koji se odigravaju na raketi tokom povratka na Zemlju blizanac sa Zemlje će posmatrati samo poslednje, desete godine. Za vreme ove poslednje godine on će događaje na raketi videti kao da se odigravaju tri puta brže nego što je to normalno. Ukupan rezultat daje da će događaje koji na raketi ukupno traju šest godina blizanac na Zemlji posmatrati deset godina, odnosno u proseku će vreme na raketi proticati sporije nego na Zemlji.

 

Iz ovoga se vidi zbog čega fizička situacija nije simetrična za oba blizanca i zašto je ukupno vreme putovanja različito za svakog od njih. Blizanac sa rakete preusmerava svoju brzinu na polovini svog putovanja i počinje da zapaža događaje na Zemlji ubrzanim tempom odmah nakon toga, dok blizanac na Zemlji mora da čeka još četiri godine da svetlosni talasi događaja okretanja rakete stignu do njega pre nego što počne da prima ubrzanim tempom događaje sa rakete. Jednostavnije rečeno, zemaljski blizanac prima svetlosne talase događaja na raketi sporijim tempom ali duže vreme nego blizanac u raketi one sa Zemlje. Efekat ove asimetrije je da zemaljski blizanac posmatra manje događaja koji se dešavaju na raketi, nego što blizanac na raketi posmatra događaja na Zemlji za vreme celog putovanja.

 

Moglo bi izgledati da su zaključci koji proizilaze iz ovakvog putovanja u suprotnosti sa predviđanjem STR da je brzina svetlosti maksimalna brzina. Kako je putovanje dugo osam svetlosnih godina, a raketa ga prelazi za šest godina putovanja zabeleženim na raketi, prostim izračunavanjem brzine (deljenje pređenog puta sa utrošenim vremenom) dobija se da brzina kojom se raketa kretala za jednu trećinu veća od brzine svetlosti. U čemu je ovde greška?

 

Razlog zbog čega se javlja "prekoračenje" brzine svetlosti je to što raketa stvari ne prelazi rastojanje od osam svetlosnih godina. Kao posledica brzine rakete rastojanje do zvezde biće skraćeno za blizanca u raketi usled Ficdžerald-Lorencove kontrakcije, pa na osnovu toga korišćenjem jednačine (1) i numeričkih vrednosti iz ovog primera dobija se skraćeno rastojanje od 4,8 svetlosnih godina za povratno putovanje. Deljenjem tog iznosa sa vremenom provedenim u putu, tj. sa šest godina, lako se utvrđuje da prosečna brzina stvarno iznosi 4/5 brzine svetlosti.

 

 

Share this post


Link to post
Share on other sites

OPŠTA TEORIJA RELATIVNOSTI (link)

 

STR pokazala se veoma uspešna u objašnjavanju okolnosti da brzina svetlosti izgleda ista svim posmatračima (kako je to pokazao Majklson-Morlijev eksperiment) i u opisivanju onoga što se događa kada se stvari kreću brzinama bliskim brzini svetlosti. Ona je, međutim, bila nesaglasna sa Njutnovom teorijom gravitacije koja je tvrdila da se tela međusobno privlače silom koja zavisi od razdaljine među njima. Ovo je značilo da ako neko pomeri dalje jedno od tela, sila kojom ono dejstvuje na drugo istog trenutka bi se smanjila. Ili, drugim rečima, gravitaciona dejstva trebalo bi da se kreću beskrajnom brzinom, umesto brzinom svetlosti ili ispod nje, kako je to zahtevala posebna teorija relativnosti. Ajnštajn je preduzeo više bezuspešnih pokušaja između 1908. i 1914. da dođe do teorije gravitacije koja bi bila saglasna sa teorijom relativnosti. Konačno, 1915, postavio je teoriju koju mi danas nazivamo Opšta teorija relativnosti (OTR).

 

Princip ekvivalentnosti

 

U osnovi OTR leži jedno vrlo jednostavno, čak trivijalno zapažanje, to je tzv. princip ekvivalentnosti.

Kada se neki putnik nalazi, u liftu ako lift krene naviše on ima osećaj kao da ga nešto dodatno pritiska prema podu, ako nosi neki teret, teret postaje teži. Putniku se čini da su i on i teret otežali, a što je ubrzanje lifta teže će postajati teže.

 

ekvivalencija.gif

 

I obrnuto, kad lift ubrzava naniže sve u njemu postaje lakše. U specijalnom slučaju, ako bi lift naniže ubrzavao ubrzanjem koje predmeti imaju kada slobodno padaju na Zemlju predmeti u liftu ne i uopšte imali težinu. Kada bi se lift ka Zemlji kretao sa još većim ubrzanjem, svaki predmet koji bi se u njemu našao bio bi pritisnut uz plafon lifta (treba napomenuti da se ovi efekti dešavaju samo kad lift ubrzava, usporava, kada se on kreće konstantnom brzinom ovi efekti se ne dešavaju).

 

Zamislimo sada tog putnika u raketi koja polazi na međuzvezdano putovanje. On u raketi nema težinu, jer je težina sila kojom neko masivno telo (u našem slučaju Zemlja) privlači neki predmet, a raketa se nalazi van dometa privlačenja, tj. van gravitacionog polja. Da ne bi plutao po raketi putnik mora da bude vezan za svoje sedište.

 

Dok raketa bude ubrzavala ka dalekoj zvezdi, svi putnici u njoj biće pritisnuti na naslone sedišta, a kad raketa uspori biće gurnuti napred (isto kao i u automobilu na Zemlji). Tom logikom će putnici u raketi povezati pritisak unazad sa ubrzanjem, a udar unapred sa kočenjem. Kad se raketa bude kretala konstantnom brzinom ovi efekti se neće javljati.

 

Dok raketa leti konstantnom brzinom kroz međuzvezdani prostor, prolazi pored jedne planete lutalice. Niko iz rakete ne vidi ovu planetu i malo je nedostajalo da udari u raketu dok je prolazila iza njenog repa. U trenutku prolaska ove planete putnici opet dobijaju težinu. Oni će to osetiti tako što će biti povučeni prema planeti dok ona prolazi, tj. ka naslonima njihovih sedišta. Kako niko u raketi ne zna za planetu koja prolazi iza njih, a efekat je isti kao kad je raketa ubrzavala, svi će pogrešno zaključiti da je raketa ubrzala, niko čak neće u to da sumnja.

 

Osnovno pitanje u vezi ovog misaonog eksperimenta je da li ljudi u raketi mogu (bez gledanja napolje) da znaju šta se zapravo desilo, da li sile koje osećaju potiču od ubrzanja ili od gravitacionog privlačenja. Odgovor je da ne postoji način da se utvrdi razlika između ove dve sile. Ajnštajn je bio impresioniran ekvivalentnošću ubrzanja i gravitacione sile i iskazao je svoje zapažanje u obliku koji je danas poznat kao princip ekvivalencije i on glasi: u jednoj tački prostora efekti gravitacije i ubrzanog kretanja su ekvivalentni i ne mogu se međusobno razlikovati.

 

Na osnovu principa ekvivalencije zaključuje se da je prividno povećanje težine putnika u liftu prouzrokovano ubrzavanjem lifta moguće izazvati i dodatnim gravitacionim silama. Ako bi se, na primer, lift sa putnicima prebacio na Jupiter, putnici bi osetili mnogo težim (masa Jupitera je 300 puta veća od mase Zemlje). Čovek koji na Zemlji ima 100 kg, na Jupiteru imao masu od 250 kg (ustvari, masa se neće promeniti ali čovek će na Jupiteru imati isti osećaj kao kada bi na Zemlji imao masu od 250 kg). Ne znajući za premeštanje lifta, putnici bi povećanje svoje težine pripisali ubrzanju lifta, ne znajući da je povećanje težine izazvano povećanom gravitacionom masom.

 

Ako bi lift, pak, bio premešten na Merkur gde sve ima tri puta manju težinu, putnici bi mislili da je to posledica toga što lift ubrzava naniže.

 

Na izgled princip ekvivalentnosti je vrlo jednostavno zapažanje. Međutim , tek Ajnštajn je skrenuo pažnju na ovaj zaključak. Da iz tog zaključka ništa drugo nije proizašlo, bio bi ocenjen kao zanimljiv i odmah zatim zaboravljen. Uz ovaj princip ekvivalentnosti , kao osnovni postulat OTR, Ajnštajn je primenio jednu granu matematike, koju je prethodno razvio Riman, tj. tenzorski račun i došao je do tri važna zaključka od kojih je svaki eksperimentalno proveren.

Share this post


Link to post
Share on other sites

Ajnštajnova teorija gravitacije

 

Razvijajući OTR, Ajnštajn je radio na razvoju teorije gravitacije. Zato se OTR naziva i Ajnštajnova teorija gravitacije. Najbitnija stvar koju je uspela da odredi Ajnštajnova teorije gravitacije, a Njutnova teorija nije mogla, bila je tačna jednačina za putanje kojima planete putuju oko Sunca. Krajnji rezultat dobijen na osnovu OTR bio je približno isti kao kod Njutna ali ipak je postojala mala razlika. Ajnštajn je, kao i Njutn, našao da su putanje planeta elipse, ali utvrdio je da te elipse nisu stacionarne nego polako rotiraju u prostoru.

 

Ova rotacija orbita koju je predvidela OTR je toliko mala da se za većinu planeta jedva može detektovati. Putanja Zemlje, na primer, rotira brzinom od samo 3,8 lučnih sekundi za 100 godina. Kako prav ugao ima 324.000 sekundi vidi se koliko je ta vrednost mala. Pored toga, treba da prođe 100 godina da bi se Zemljina orbita okrenula za taj iznos. Ovom brzinom trebalo bi 34 miliona godina za jedan pun obrt Zemljine orbite.

 

Prema ovoj teoriji orbite planeta su ustvari slične rozetama (ovako se ponašaju i elektroni oko jezgra). Kako je brzina ove rotacije mnogo mala, treba puno vremena da rozeta bude potpuna, pa se iz tih razloga uzima da su orbite planeta eliptične, a ne rozete.

Ajnštajnova i Njutnova teorija gravitacije daju različite rezultate za iste pojave, pa prema tome jedna od njih ne može da bude tačna. Razlika u vrednostima koje ove dve teorije daju je vrlo mala, pa bez obzira na to što je  osnovi Njutnova teorija ne daje potpuno tačne rezultate, nju je moguće koristiti onda kada nije neophodna neka ogromna preciznost izračunavanja.

 

Jedan dokaz OTR sastojao se u traganju za planetom čija orbita najviše rotira u datom vremenskom periodu. Teorija je pokazala da iznos rotacije treba da  bude najveći za planete sa najvećom orbitalnom brzinom. Ali takođe je bilo potrebno da se koristi planeta čija je orbita što je moguće više eliptična, jer neke od orbita planeta, npr. Zemljina, su toliko bliske kružnim da je teško reći da li rotiraju ili ne.

 

rozeta.gif

 

Na veliku sreću desilo se da planeta Merkur ima jednu od najspljoštenijih orbita i najveću orbitalnu brzinu. Mnogo godina pre toga bilo je poznato zagonetno ponašanje orbite ove planete: imala je rotaciju od 43 lučne sekunde za 100 godina, koja se nije mogla objasniti (ukupna rotacija orbite Merkura je približno 574 lučnih sekundi za 100 god, bilo je poznato da 531 lučnu sec. treba pripisati gravitacionom efektu drugih planeta). Godine 1845. francuski matematičar Leverije pokazao je da ovaj višak rotacije može da bude posledica postojanja još jedne lanete između Merkura i Sunca. Astronomi su uporno tragali za tom planetom, ali ona nije nikad nađena (Leverije je na isti način predvideo planetu Neptun iz varijacija u orbiti Urana i ona je bila uspešno otkrivena). I Pluton je bio otkriven 1930. god kao rezultat preostalih varijacija orbite Urana.

 

Sve do objavljivanja OTR uzrok viška rotacije Merkura bio je misterija. Primenom OTR za izračunavanje viška rotacije u periodu od 100 godina dobijen je rezultat od 43 lučne sekunde, odnosno tačan iznos rotacije koji ranije nije mogao biti objašnjen. Bio je to prvi i najubedljiviji dokaz OTR.

Share this post


Link to post
Share on other sites

Придружите се разговору

Можете одговорити сада, а касније да се региструјете на Поуке.орг Ако имате налог, пријавите се сада да бисте објавили на свом налогу.

Guest
Имаш нешто да додаш? Одговори на ову тему

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Create New...