Jump to content
Јагода Наранџа Банана Лимета Лист Море Небо Боровница Грожђе Лубеница Чоколада Мермер WhatsApp Ubuntu Угаљ
Јагода Наранџа Банана Лимета Лист Море Небо Боровница Грожђе Лубеница Чоколада Мермер WhatsApp Ubuntu Угаљ

Придружите се нашој ВИБЕР ГРУПИ на ЛИНКУ

Претражи Живе Речи Утехе

Showing results for tags 'објектима'.



More search options

  • Search By Tags

    Тагове одвојите запетама
  • Search By Author

Content Type


Форуми

  • Студентски форум ПБФ
  • Питајте
    • Разговори
    • ЖРУ саветовалиште
  • Црква
    • Српска Православна Црква
    • Духовни живот наше Свете Цркве
    • Остале Помесне Цркве
    • Литургија и свет око нас
    • Свето Писмо
    • Најаве, промоције
    • Црква на друштвеним и интернет мрежама (social network)
  • Дијалог Цркве са свима
    • Унутарправославни дијалог
    • Međureligijski i međukonfesionalni dijalog (opšte teme)
    • Dijalog sa braćom rimokatolicima
    • Dijalog sa braćom protestantima
    • Dijalog sa bračom muslimanima
    • Хришћанство ван православља
    • Дијалог са атеистима
  • Друштво
    • Друштво
    • Брак, породица
  • Наука и уметност
    • Уметност
    • Науке
    • Ваздухопловство
  • Discussions, Дискусии
    • Poetry...spelling God in plain English
    • Дискусии на русском языке
  • Разно
    • Женски кутак
    • Наш форум
    • Компјутери
  • Странице, групе и квизови
    • Странице и групе (затворене)
    • Knjige-Odahviingova Grupa
    • Ходочашћа
    • Носталгија
    • Верско добротворно старатељство
    • Аудио билбиотека - Наша билиотека
  • Форум вероучитеља
    • Настава
  • Православна берза
    • Продаја и куповина половних књига
    • Поклањамо!
    • Продаја православних икона, бројаница и других црквених реликвија
    • Продаја и куповина нових књига
  • Православно црквено појање са правилом
    • Византијско појање
    • Богослужења, општи појмови, теорија
    • Литургија(е), учење појања и правило
    • Вечерње
    • Јутрење
    • Великопосно богослужење
    • Остала богослужње, молитвословља...
  • Поуке.орг пројекти
    • Питајте о. Саву Јањића, Игумана манастира Дечани
    • Churchpic - Најлепше слике из Цркве на једном месту
    • Упозванање ради хришћанског брака
    • Пријавите се на наш Viber приватни chat
    • Свето Писмо са преводима и упоредним местима
    • Православна друштвена мрежа Црква.нет
    • Downloads
    • Блогови
    • Не псуј БОГА!!!
  • Informacione Tehnologije's Alati za dizajn
  • Informacione Tehnologije's Vesti i događaji u vezi IT
  • Informacione Tehnologije's Alati za razvijanje software-a
  • Informacione Tehnologije's 8-bit
  • Društvo mrtvih ateista's Ja bih za njih otvorio jedan klub... ;)
  • Društvo mrtvih ateista's A vi kako te?
  • Društvo mrtvih ateista's Ozbiljne teme
  • Klub umetnika's Naši radovi
  • ЕјчЕн's Како, бре...
  • Књижевни клуб "Поуке"'s Добродошли у Књижевни клуб "Поуке"
  • Поклон књига ПОУКА - сваки дан's Како дарујемо књиге?
  • Клуб члановa са Вибер групе Поуке.орг's Договори
  • Клуб члановa са Вибер групе Поуке.орг's Опште теме
  • Клуб члановa са Вибер групе Поуке.орг's Нови чланови Вибер групе, представљање
  • Правнички клуб "Живо Право Утехе"'s Теме
  • Astronomija's Crne Rupe
  • Astronomija's Sunčevi sistemi
  • Astronomija's Oprema za astronomiju
  • Astronomija's Galaksije
  • Astronomija's Muzika
  • Astronomija's Nebule
  • Astronomija's Sunčev sistem
  • Пољопривредници's Баштованство
  • Пољопривредници's Пчеларство

Категорије

  • Вести из Србије
    • Актуелне вести из земље
    • Друштво
    • Култура
    • Спорт
    • Наша дијаспора
    • Остале некатегорисане вести
  • Вести из Цркве
    • Вести из Архиепископије
    • Вести из Епархија
    • Вести из Православних помесних Цркава
    • Вести са Косова и Метохије
    • Вести из Архиепископије охридске
    • Остале вести из Цркве
  • Најновији текстови
    • Поучни
    • Теолошки
    • Песме
    • Некатегорисани текстови
  • Вести из региона
  • Вести из света
  • Вести из осталих цркава
  • Вести из верских заједница
  • Остале некатегорисане вести
  • Аналитика

Категорије

  • Књиге
    • Православна црквена литература
    • Неправославна литература
    • Философија
    • Психологија
    • Историја
    • Ваздухопловство
    • Речници
    • Периодика
    • Скрипте
    • Белетристика
    • Поезија
    • Књижевни класици
    • Књиге на руском језику
    • Књиге на енглеском језику
    • Некатегоризовано
  • Аудио записи
    • Философија
    • Догматика
    • Византијско појање
    • Српско Појање
    • Учење црквеног појања
    • Свето Писмо предавања са ПБФ-а
    • Предавања, трибине
    • Некатегоризовано
    • Аудио књиге
  • Фајлови, програми
  • Правнички клуб "Живо Право Утехе"'s Files
  • Правнички клуб "Живо Право Утехе"'s Библиотека
  • Лествица,Свети Јован Лествичник's Књиге,Пдф
  • Лествица,Свети Јован Лествичник's Презентација
  • Лествица,Свети Јован Лествичник's Files
  • Лествица,Свети Јован Лествичник's Презентација
  • Лествица,Свети Јован Лествичник's Видео
  • Лествица,Свети Јован Лествичник's а

Blogs

There are no results to display.

There are no results to display.


Прикажи резулте из

Прикажи резултате који садрже


По датуму

  • Start

    End


Последње измене

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Facebook


Skype


Twitter


Instagram


Yahoo


Crkva.net


Локација :


Интересовање :

Found 1 result

  1. Два експеримента: - један на факултету у Финској https://www.nature.com/articles/s41586-018-0038-x - а други у Аустрији и Холандији https://www.nature.com/articles/s41586-018-0036-z у којем је учествовао и наш човек, су по први пут показала квантну преплетеност на макро објектима тј. на објектима сачињеним од милијарди атома. До сада је тај феномен био експериментално ограничен на квантне објекте као што су фотони, електрони и атоми. Ова два експеримента отварају огромне могућности за нове експерименте, сазнања и практичне примене. NEWS AND VIEWS 25 APRIL 2018 Entangled vibrations in mechanical oscillators Two experiments have demonstrated entanglement — non-classical correlations — between remote mechanical systems comprising billions of atoms. The results could advance our understanding of quantum physics. Andrew Armour In the quantum world, the properties of particles can be correlated in an extremely strange way. Measurements on one particle can influence the properties of another, even if the two particles are far apart. Such behaviour is known as entanglement and was initially so paradoxical that many people, including Albert Einstein1, thought that the underlying theory must be incomplete. However, experiments have verified the counter-intuitive properties of entanglement2, and physicists have got used to the idea, recognizing that it could be exploited to develop innovative forms of technology. In two papers in Nature, Riedinger et al.3 and Ockeloen–Korppi et al.4 take the exploration of entanglement in a new direction. They entangle the vibrations of a pair of remote mechanical oscillators, each of which contains billions of atoms. Read the paper: Remote quantum entanglement between two micromechanical oscillators Mechanical oscillators, such as a mass on a spring or the head of a drum, are familiar objects. They respond to being pushed out of equilibrium by vibrating back and forth at a fixed frequency. Because motion can be generated in lots of different ways — using light, electrical currents or even gravity — mechanical oscillators are highly versatile. Consequently, they have many applications, for example in the detection of weak forces5. Uncovering signatures of quantum behaviour, such as entanglement, in mechanical oscillators is exceptionally challenging — largely because it is difficult to prevent these objects from being disturbed by their surroundings. The oscillators usually have low vibrational frequencies and are therefore susceptible to disruption from the thermal jiggling of surrounding atoms. By contrast, the electromagnetic field associated with light has extremely high-frequency oscillations, which means that light is completely insensitive to thermal fluctuations at room temperature. As a result, it is relatively easy to control the properties of light with the exquisite precision required to reveal quantum effects, and the production of entangled light has become almost routine. Read the paper: Stabilized entanglement of massive mechanical oscillators The experiments of Riedinger et al. and Ockeloen–Korppi et al. differed in detail, but shared several key ingredients. To counter the effects of thermal fluctuations, both groups of authors used micrometre-scale mechanical oscillators, which ensured that the vibrational frequencies were not too low, and cooled the oscillators to temperatures of less than 0.1 kelvin. In both experiments, electromagnetic radiation (in the form of light or microwaves) provided the means to generate and detect the entanglement of the oscillators6,7. Riedinger and colleagues used a pair of oscillators in the form of 10-μm-long silicon beams — rods that were clamped at both ends and suspended in the middle (Fig. 1a). Each beam contained small holes designed to trap light, that coupled to rapid oscillations (with frequencies of about 5 gigahertz) in the beam’s width. The authors shone weak pulses of light on the beams, and monitored the light that was scattered, using a sophisticated scheme that did not reveal which beam the light came from. The detection of such light meant that energy had been transferred from a pulse to the vibrations of a beam, but because there was no information about which oscillator was involved, the vibrations of the two beams were entangled. Figure 1 | Entanglement of two types of mechanical oscillator. Riedinger et al.3 and Ockeloen–Korppi et al.4 report entanglement (non-classical correlations) between the vibrations of two remote micrometre-scale mechanical oscillators. a, Riedinger and colleagues used oscillators in the form of silicon beams. Each beam contained small holes designed to trap light, that coupled to rapid oscillations in the beam’s width. The authors achieved entanglement by shining pulses of light on the beams and detecting the light that was scattered. b, By contrast, Ockeloen–Korppi and colleagues used metal drumheads that vibrated up and down above fixed metal plates. The drumheads and the plates were connected by an electrical circuit. The authors injected microwaves into the circuit; these bounced back and forth between the oscillators, coupling the drumheads and giving rise to entanglement. The trick of using light to generate entanglement in this way8 works only if the light scatters from objects that are almost perfect copies of each other. This is difficult to achieve using small mechanical beams, because such objects are produced by a destructive process in which they are essentially sculpted out of a monolithic slab of material. Riedinger et al. therefore produced chips containing hundreds of beams from which they selected the best-matched pair. Ockeloen–Korppi et al. used a pair of metal drumheads that vibrated up and down above fixed metal plates (Fig. 1b). The drumheads had diameters of about 15 μm and low vibrational frequencies (about 10 MHz). The authors connected the drumheads by an electrical circuit in which microwaves could bounce back and forth. The microwaves influenced the motion of the drumheads, but were also affected by this motion, coupling the oscillators in the same way that a spring can link two pendulums. This allowed an entangled state to form, and to persist indefinitely, despite the low vibrational frequencies of the drumheads9. Taken together, these two experiments provide an elegant illustration of the power and versatility of electromagnetic radiation as a tool for exploring quantum features of mechanical motion. Each experiment has its advantages. Riedinger and colleagues’ beams interface directly with light and are not connected by wires, which means that these devices could be readily integrated into future optical communication networks designed to exploit the effects of entanglement. Ockeloen–Korppi and colleagues’ results are particularly striking, given the low vibrational frequencies that they used; and their approach avoids the need for mass fabrication, because the oscillators need not be almost identical. It was only in 2009 that entanglement was first reported between mechanical oscillators consisting of just two atomic ions10. Since then, experiments have demonstrated entangled vibrations in the lattices of crystals11, at frequencies much higher than even those of Riedinger and colleagues’ beams. In terms of the number of atoms involved, the oscillators used by Riedinger et al. and Ockeloen–Korppi et al. are both a big step up from atomic ions, but they are still much smaller than the macroscopic objects encountered in everyday life. It will be fascinating to see how much further up in scale experiments are able to go in the next decade. Such progress could lead to exciting insights — for example, larger mechanical oscillators in entangled states might provide answers to outstanding questions about how gravity relates to quantum physics12. Извор: https://www.nature.com/articles/d41586-018-04827-5
×